TESİSLERDE REAKTİF GÜÇ KOMPANZASYONU
Günümüzde bütün Dünya memleketleri, yeryüzü ve yer altı enerji kaynaklarının en ekonomik şekilde harcama yollarını ararken, kurulmuş olan enerji kaynaklarının da en verimli kullanılması temine çalışmaktadır.
Elektrik enerjisinin, asrımızın en yaygın kaynaklarından biri olarak üretildiği, santralden en küçük alıcıya kadar dağıtımında en az kayıpla taşımanın yolları ve hesapları yapılmaktadır.
Dünyamızda elektrik enerjisine ihtiyacın her geçen gün biraz daha artması, enerji üretiminin gittikçe pahalılaşması, taşınan enerjinin de kaliteli, ucuz ve hakiki iş gören aktif enerji olmasını daha zorunlu kılmaktadır.
Bilindiği gibi; şebekeye bağlı bir alıcı, eğer bir motor, bir transformatör, bir floresant lamba ise, bunlar manyetik alanlarının temini için bağlı oldukları şebekeden bir reaktif akım çekerler.
İşte; santralde üretilen bir enerji, aktif ve reaktif akım adı altında en küçük alıcıya kadar beraberce akmakta, iş yapmayan, sadece motorda magnetik alan doğurmaya yarayan reaktif akım, havai hatta, trafoda, tablo, şalterler ve kabloda lüzumsuz yere kayıplara sebebiyet vermektedir.
Bu kayıplar yok edilirse, şüphesiz trafo daha fazla motoru besleyebilecek bir kapasiteye sahip olacak, keza disjonktör lüzumsuz yere büyük seçilmeyecek, kablo ise daha küçük kesitte seçilebilecektir.
Daha az yatırımla motora enerji verme yanında, uygulanan tarifeler yönünden, her ay daha az elektrik enerjisi ödemesi yapılacaktır.
Görüldüğü veçhile, daha ilk bakışta reaktif akımının santralden alıcıya kadar taşınması, büyük ekonomik kayıp görünmektedir.Genellikle enerji dağıtım şebekelerinde lüzumsuz yere taşınan bu enerji, taşınan aktif enerjinin % 75-100 arasında tespit edilmektedir.
İşte bu reaktif enerjinin santral yerine, motora en yakın bir mahalden gerek kondansatör tesisleri, gerekse senkron döner makineler tarafından temin edilmesiyle, santralden motora kadar mevcut bütün tesisler bu reaktif akımın taşınmasından, yükünden arınmış olacaktır.
Iw = IAktif
Ib = IReaktif
I1 = Zahiri akım
I1 cos? = Aktif akım
I1 sin? = Reaktif akım
Santralden motora kadar bütün hatlar, tesisler:
I cos?+ I sin? = I aktif + I reaktif
Akımının toplamı ile yüklenmekte, motor ise ancak:
P =U.I.Cos?
Aktif enerjiyi almaktadır.
Reaktif güç kompanzasyonu, çeşitli memleketlerde ayrı ayrı ele alınmış, Almanya’da; orta gerilim kondansatörlerine karşı 4 kat daha fazla alçak gerilim kondansatörleri yapılmışken, Japonya’da; yine1963 yıllarında bunun tamamen tersi ve keza Amerika’da da orta gerilim kondansatörlerine önem verilmiştir.
Bu değişik düşünce ve uygulamaya sebep olarak, şebeke sistemlerinin farklılıkları yanında, santraların endüstri ve alıcılara olan yakınlığı ve enerji satan teşkilatların tarifeleri ile tüketicilerin mecbur tutulduğu şartlarda söylenebilir.
KOMPANZASYON TESİSLERİNİN ÇEŞİTLERİ
1) Bireysel Kompanzasyon
Alıcıların tek tek kompanze edilmesi bu şekilde her motor, her lamba veya transformatör kendine paralel bağlı belli güçte kondansatörlerle tek tek kompanze edilir.
Avantajları
Kondansatörler her alıcı ile beraber devreye girip çıktığından ayrı bir açıcı cihaza, ayrı bir sigorta veya deşarj direncine lüzum yoktur.Büyük motorların devreye girip çıkmalarında gerilim salınması küçük mertebelerde kalır.Motora bağlı kondansatörün uygun seçilmesi icap eder.Motor devreden çıktığında aşırı kompanzasyon, motorların kendi kendine ikazlanmasına sebep olabilir. Motorlar genellikle asenkron sincap kafeslidir.Lüzumlu kondansatör gücü
Oc (kVAr)=0,9.Io (A) UN(V).10-3
Io Motorun boşta çalışma akımım olup bu akımdan dolayı çekilen reaktif güç motorun bütün yüklenmeleri için konstant alınabilir.(Yol verme hariç)
2) Grup Kompanzasyonu
Beraber ve aynı kontaktör veya şalter üzerinden devreye girip çıkan motor, lamba ve transfor- matörler müşterek kompanze edilebilir.Sigorta ve deşarj dirençlerine ihtiyaç yoktur.
Eğer bir grupta her motor ayrı ayrı kontaktörle devreye sokulup çıkarılıyorsa kondansatörleri de yine ayrı kontaktörlerle fakat motor kontaklarıyla paralel girebilecek şekilde bağlamak icap e-der.Bu durumda ayrı sigortalara ve deşarj dirençlerine ihtiyaç vardır.
3) Merkezi Kompanzasyon
Tabloya bağlı çok sayıda motor veya indüktif yük çeken alıcı bulunuyor ve bunlar belli belirsiz zamanlarda devreye girip çıkıyorlarsa çekilen yük durumuna göre ayarlı bir kompanzasyon böyle bir sistemle yerine getirilebilir.El ve otomatik çalışma durumları daima düzgün bir cos? seviyesini tutmaya çalışır.Kademeli olarak kondansatör devreye sokup çıkarma az salınımla gerilim darbeleri yaratır.Projelendirilmesi ve hesaplanmaları kolaydır.Mevcut tesislere bağlanması problemsiz olup çok az zamanda montaj ve işletmeye alma mümkündür.Tek veya paralel çalışan transformatörleri de toplama akım trafoları üzerinden kompanze etmek mümkündür.Kullanılan elektronik reglerin hassasiyet sınırı ve çalışacağı endüktif veya kapasitif bölgenin potansiyometrelerle hariçten ayarlanabilmeleri her tesise uygun bir kompanzasyon tesimetrelerle hariçten ayarlanabilmeleri her tesise uygun bir kompanzasyon tesisinin kolayca işletmeye girmesini kolaylaştırır.
Bir tesisin hangi çeşit kompanzasyonla donatılması lazım geldiği işletmenin muhtelif zamanlar-da alınmış yüklenme eğrilerine göre seçilmelidir.
NOT ALINTIDIR!!!
KÜÇÜK BİR BİLGİLENDİRME DOSYASI! İHTİYAÇ DUYANLAR İÇİN
ŞİFERSİ:
Kontrolkalemi.com*