Klavyeah
Üye
- Katılım
- 28 Ağu 2006
- Mesajlar
- 269
- Puanları
- 1
- Yaş
- 39
Kompleks Sayıların Alternatif Akım Devrelerine Uygulanması
5.1 R-L (DİRENÇ – BOBİN) SERİ DEVRESİ
5.2 R-C (DİRENÇ – KONDANSATÖR) SERİ DEVRESİ
5.3 R-L-C (DİRENÇ – BOBİN – KONDANSATÖR) SERİ DEVRESİ
5.4 R-L (DİRENÇ – BOBİN) PARALEL DEVRESİ
5.5 R-C (DİRENÇ – KONDANSATÖR) PARALEL DEVRESİ
5.6 R-L-C (DİRENÇ – BOBİN – KONDANSATÖR) PARALEL DEVRESİ
GİRİŞ
Sinüzoidal emk’leri ve sinüzoidal akımları dönen vektörlerle gösterilmişti. Kompleks sayılarla vektörlerin toplanması, çıkarılması, çarpılması ve bölünmesi işlemlerini çabuk ve doğru olarak kolayca yapılabildiği matematik de incelendiğinde görülür. Burada kompleks sayıların nasıl olduğu anlatılmayacaktır. Bu herhangi bir matematik kitabından incelendiğinde anlaşılacağını umarım. Kompleks sayılar bize vektörlerin herhangi bir dereceden kuvvetlerini ve köklerini kolayca bulunabilme olanağı da sağlamaktadır. Alternatif akım devrelerinin çözümlerinde büyük kolaylıklar sağlayan bu sayıları devrelerin çözümlerinde sıkça kullanacağız. Vektörlerin toplanmasında ve çıkarılmaları için dik bileşen vektörleri halinde bulunmaları gerekir. Dik bileşen vektörlerini çarpmak, bölmek ve bir kuvvete yükseltmek mümkündür. Fakat uzun ve zordur bu işlemleri kutupsal veya üslü vektörlerle yapmak daha kolay ve kısadır. Yalnız kutupsal ve üslü vektörlerle kök alma işlemi yapılabilir. Herhangi bir vektörün üç şekilde gösterilir.
Bu hatırlatmalardan sonra önceki konularda incelenen devre bağlantı çeşitlerinin analizlerini kompleks sayılarla analizi yapılacaktır.
5.1 R-L (DİRENÇ – BOBİN) SERİ DEVRESİ
Şekil5.1 de seri bağlanmış olan RL devresi kirşofun gerilimler kanunundan, kaynağın gerilimi elemanlar üzerinde düşen gerilimlerin toplamına eşittir. Bu kompleks sayılarla ilk incelediğimiz alternatif akım devresi olduğundan açıklamalı olarak işlemleri ve formülleri çıkartalım.
RL elemanı uçlarına bir alternatif bir U gerilimi uygulandığında bu kaynaktan bir akım çekilecektir. Devre seri olduğundan bu akım değeri devre elemanları
üzerinden aynen geçecektir. Fakat uçlarındaki gerilimle bu akım arasında elemanına göre bir faz farklılığı oluşturacaktır. Bunu önceki konularda elemanları devrede tek olarak bağladığımızdaki akımla gerilim arasındaki faz farklıklarını açıklamıştık. Direnç elemanı üzerinden geçen akım ve uçlarındaki gerilimle herhangi bir faz farkı oluşturmamakta fakat bobin üzerinden geçen akımla uçlarındaki gerilim düşümü ile 90 faz fakı oluşturmakta, akım gerilimden 90 geri fazda kalmakta olduğu önceki konulardan biliniyor. Seri devrede akım değişmediği için baz olarak veya başlangıç ekseni olarak akım alınır. Bu açıklamalarla gerilim ve empedans üçgenlerini oluşturalım.
Şekil5.2 RL seri devresinin gerilim ve empedans üçgeni
Akım seri elemanlardan aynı aktığı için başlangıç ekseninde alınmış, UR direnç akımla gerilim arasında faz farkı oluşturmadığı için UR gerilimi de genliği kadar akımla aynı eksende çizilmiştir. Bobin elemanı üzerinden bir akım geçtiğinde uçlarındaki gerilim, akımdan 90 ilerde olduğundan sanal eksende jUL olarak şekil5.2 de gösterilmiştir. Devre geriliminin dik bileşenler ve kutupsal gösterilişi aşağıdaki gibi olur.
RL seri devresinin eşdeğer empedansı ise şekil5.2 deki empedans üçgeninden dik bileşen ve kutupsal şeklinde gösterimi aşağıdaki şekildedir.
Empedans üçgenine biraz matematiksel işlemler yapıldığında devrenin akımı ile gerilimi arasındaki faz farkı açısını, devrenin empedansı ve faz açısı bilindiğinde devre eleman değerlerinin bulunması gibi formüller ortaya çıkarılabilir.
Alternatif akım devresinde R=2 ohm direnç ile L=0,01 H değerlerindeki iki eleman seri bağlanarak uçlarına 200 V, 50 Hz lik bir gerilim uygulandığında kaynaktan çekilen akımı bulunuz.
Devrenin empedansının bulunabilmesi için endüktif reaktansın aşağıdaki şekilde bulunur, bulunan bu değer devrenin empedansında kullanılır.
250 V ,50 Hz lik bir gerilimle beslenen endüktif devreden 10 A geçmekte ve 750 W harcanmaktadır.R ve L değerleri ile sistemde görünen, harcanan ve reaktif güçleri bulunuz.
buradan reel değer aktif gücü, sanal değer de reaktif gücü vereceğinden P=750 W, Q=2385 VAr
5.2 R-C (DİRENÇ – KONDANSATÖR) SERİ DEVRESİ
Şekil5.3 de görülen devrede direnç elemanı ile kondansatör elemanı seri bağlanıp uçlarına bir alternatif gerilim uygulandığında bu gerilimin devre elemanları üzerinde iki bileşeni vardır. Direnç elemanı üzerindeki gerilim düşümü akımla aynı fazda, kondansatör uçlarındaki gerilim düşümü ise akımdan 90 geri fazdadır.
Bu açıklamalar doğrultusunda seri devre olduğundan akım referans ekseninde alınarak devre vektörü aşağıda şekil5.4 deki gibi çizilir.
Şekil5.4 deki gerilim üçgeninden devrenin gerilim reel eksende olan UR gerilimi ile sanal eksende olan UC geriliminin toplamına eşit olacaktır.
gerilim değeri ve faz açısı buradan bulunur ve devrenin empedansı da şekil5.4 deki empedans üçgeninden dik bileşenler ve kutupsal gösterim şeklindeki formülü bulunur.
Empedans formülü dikkat edilirse vektörel olarak bulduğumuz formülün aynısıdır. Burada reel değer direnç elemanını, sanal kısmını da kapasitif reaktans oluşturmaktadır. Kapasitif reaktansın XC’nin önüne –j getirilmiştir. Bu da (-90) ifade eder. Empedans üçgeninden devre ile ilgili aşağıdaki formüller çıkartılabilir.
Empedans değeri ve faz açısı bilindiği durumda devre elemanlarının değerleri bulunabilir.
Saf bir R direnci ile bir kondansatör seri bağlanmıştır. Sisteme 120 volt, 100 Hz uygulandığı zaman devredeki akım 2,5 amper ve sistemde harcanan güç 240 W tır. R direnci ile C kapasitesinin değerini hesaplayınız.
Direnç elemanının değerini devrede harcanan aktif güç bu eleman üzerinde harcandığı için güç formülünden direnç değeri bulunabilir.
Devre akım ve devre gerilimi bilindiğine göre devrenin empedansı ohm kanunundan faydalanılarak bulunur.