drexel
Üye
- Katılım
- 3 Eki 2009
- Mesajlar
- 22
- Puanları
- 1
- Yaş
- 39
Arkadaşlar hepinize iyi forumlar.
İnternette yer alan kodlardan fayadalanarak bir rfid kart okuyucu yapmaya çalışıyorum fakat başarılı olamadım. Bana nerede hata yaptığımı söyleyebilirseniz memnun olurum.
Rfid okuyucu olarak mikroelektronika rfid reader kullanılmıştır. Bunun dışında kullanılan proximity kartlar:
PROXİMİTY KART - Elektrovadi
Aşağıda ccs kodu vardır. Program if(em4102_read()) kısmında takılıyor gibi duruyor. Nedenini hala çözemedim.
Yazdığım Rfid CCS C kodu:
Bu da em4102_read.c kodu
İnternette yer alan kodlardan fayadalanarak bir rfid kart okuyucu yapmaya çalışıyorum fakat başarılı olamadım. Bana nerede hata yaptığımı söyleyebilirseniz memnun olurum.
Rfid okuyucu olarak mikroelektronika rfid reader kullanılmıştır. Bunun dışında kullanılan proximity kartlar:
PROXİMİTY KART - Elektrovadi
Aşağıda ccs kodu vardır. Program if(em4102_read()) kısmında takılıyor gibi duruyor. Nedenini hala çözemedim.
Yazdığım Rfid CCS C kodu:
Kod:
#include <18F4550.h>
#include <string.h>
#use delay(clock=4000000)
#fuses XT,NOWDT,NOPROTECT,NOLVP,NOBROWNOUT,PUT,NOMCLR
#include <flex_lcd.c>
#include <em4095_read.c>
#include <em4102.c>
char text[] = "RFID SISTEMI";
char text2[] = "Altan";
int32 tagNum;
int8 customerCode;
int8 code[5];
void main()
{
setup_adc_ports(NO_ANALOGS);
setup_comparator(NC_NC_NC_NC);
lcd_init();
rf_init(); //rfid yüklemesini yap
output_high(PIN_A0);
Output_high(PIN_A1);
output_low(PIN_A2);
output_high(PIN_A3);
lcd_gotoxy(1,1);
printf(lcd_putc,"%s",text);
delay_ms(1000);
lcd_gotoxy(1,2);
printf(lcd_putc,"%s",text2);
delay_ms(1000);
lcd_gotoxy(1,1);
lcd_putc(" ");
lcd_gotoxy(1,2);
lcd_putc(" ");
while (1)
{
if(read_4102(code)) //kart antene yaklaştırılınca
{
lcd_gotoxy(1,1);
lcd_putc("Kart Okunuyor...");
delay_ms(1000);
lcd_gotoxy(1,1);
lcd_putc(" ");
tagNum = make32(code[1],code[2],code[3],code[4]);
customerCode = code[0];
lcd_gotoxy(1,1);
printf(lcd_putc,"%s",customerCode);
lcd_gotoxy(1,2);
printf(lcd_putc,"%s",tagNum);
}
}
}
Bu da em4102_read.c kodu
Kod:
/////////////////////////////////////////////////////////////////////////
//// em4095_read.c ////
//// This file contains drivers for a EM4095 RFID basestation. ////
//// ////
/////////////////////////////////////////////////////////////////////////
//// ////
//// Pin Layout ////
//// ------------------------------------------------------------ ////
//// | | ////
//// | 1: VSS GND | 16: DC2 | ////
//// | | | ////
//// | 2: RDY/CLK RF_RDY_CLK | 15: FCAP | ////
//// | | | ////
//// | 3: ANT1 | 14: SHD RF_SHD | ////
//// | | | ////
//// | 4: DVDD | 13: DEMOD_OUT RF_DEMOD_OUT | ////
//// | | | ////
//// | 5: DVDS | 12: MOD RF_MOD | ////
//// | | | ////
//// | 6: ANT2 | 11: AGND | ////
//// | | | ////
//// | 7: VDD +5V | 10: CDEC_IN | ////
//// | | | ////
//// | 8: DMOD_IN | 9: CDEC_OUT | ////
//// ------------------------------------------------------------ ////
//// ////
/////////////////////////////////////////////////////////////////////////
#ifndef EM4095
#define EM4095
#ifndef RF_SHD
#define RF_RDY_CLK PIN_C0 // External interrupt used to read clock
#define RF_SHD PIN_D3 // High disables the antenna signal
#define RF_MOD PIN_D2 // High does 100% modulation
#define RF_DEMOD_OUT PIN_C2 // Data read in interrupt service routine
#endif
// Provide a buffer for storing recieved data and data to be sent
#define RFBUFFER_SIZE 20
int8 RFbuffer[RFBUFFER_SIZE];
int8 RFbuffer_index = 0;
int8 RFbuffer_bitIndex = 0;
#define END_OF_RFBUFFER (RFbuffer_index == sizeof(RFbuffer))
/////////////////////////////////////////////////////////////////////////
//// Read modes available for reading data from a transponder
/////////////////////////////////////////////////////////////////////////
int8 RF_readMode;
#define RF_MANCHESTER_DATA 0 // Reads Manchester encoded data
#define RF_MEASURE_WIDTHS 1 // Measure a series of widths
#define RF_FIND_WIDTH 2 // Find a specific width
#define RF_FIND_PATTERN 3 // Find a pattern of widths
/////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
//// Global Variables
/////////////////////////////////////////////////////////////////////////
int1 bitValue = 1;
int1 storeData = TRUE;
int1 RE_FE_TOGGLE = 1;
int1 RF_widthFound = FALSE;
int1 RF_patternFound = FALSE;
int8 RF_widthToFind = 0;
int8* RF_findWidths = 0;
int8 RF_uncertainty = 0;
int8 timer0_overflows = 0;
int8 dataTransferred = 0;
int16 old_clock = 0;
/////////////////////////////////////////////////////////////////////////
// Purpose: Initializes the 4095 into sleep mode
// Sets up the timers and interrupts
void rf_init()
{
output_low(RF_SHD);
output_low(RF_MOD);
setup_timer_1(T1_EXTERNAL | T1_DIV_BY_1);
setup_ccp1(CCP_CAPTURE_RE);
//setup_ccp2(CCP_COMPARE_INT);
setup_timer_0(RTCC_INTERNAL | RTCC_DIV_256 | RTCC_8_BIT);
enable_interrupts(INT_RTCC);
enable_interrupts(GLOBAL);
}
// Purpose: Powers down the RF antenna
//#define rf_powerDown() output_high(RF_SHD);
// Purpose: Powers up the RF antenna
//#define rf_powerUp() output_low(RF_SHD);
// Purpose: Select which edge to begin reading data
void RF_readEdge(int1 edge)
{
if(edge)
{
setup_ccp1(CCP_CAPTURE_RE);
RE_FE_TOGGLE = 1;
}
else
{
setup_ccp1(CCP_CAPTURE_FE);
RE_FE_TOGGLE = 0;
}
}
// Purpose: Interrupt service routine to handle compare 1 interrupts.
// Reads incoming data from a transponder and stores it in
// the global buffer.
#INT_CCP1
void isr_ccp1()
{
int8 width;
// Toggle between capturing rising and falling edges to meausure width
if(RE_FE_TOGGLE)
{
setup_ccp1(CCP_CAPTURE_FE);
RE_FE_TOGGLE = 0;
}
else
{
setup_ccp1(CCP_CAPTURE_RE);
RE_FE_TOGGLE = 1;
}
// Calculate the width
width = CCP_1 - old_clock;
old_clock = CCP_1;
switch(RF_readMode)
{
// Use to receive manchester formatted data from a transponder
case RF_MANCHESTER_DATA:
{
if(width > 54) // Check for a phase change
{
bitValue = ~bitValue; // Invert the save bit value
storeData = TRUE; // Force a bit store
}
if(storeData)
{
shift_right(RFbuffer+RFbuffer_index, 1, bitValue);
++dataTransferred;
if(++RFbuffer_bitIndex == 8)
{
RFbuffer_bitIndex = 0;
++RFbuffer_index;
}
}
storeData = ~storeData;
break;
}
// Use to read high and low widths
case RF_MEASURE_WIDTHS:
{
RFbuffer[RFbuffer_index++] = width;
++dataTransferred;
break;
}
// Use to search for a certain pulse width
case RF_FIND_WIDTH:
{
if(width > (RF_widthToFind - RF_uncertainty)
&& width < (RF_widthToFind + RF_uncertainty))
{
RF_widthFound = TRUE;
}
break;
}
case RF_FIND_PATTERN:
{
if(width > RF_findWidths[RFbuffer_index] - RF_uncertainty
&& width < RF_findWidths[RFbuffer_index] + RF_uncertainty)
{
if(++RFbuffer_index == dataTransferred)
{
RF_patternFound = TRUE;
}
}
else
{
if(RFbuffer_index > 0)
{
int8 pos, i, j;
pos = RFbuffer_index-1; // Save the initial position
// Try to match partial pattern
while(--RFbuffer_index != 0)
{
if(width > RF_findWidths[RFbuffer_index] - RF_uncertainty
&& width < RF_findWidths[RFbuffer_index] + RF_uncertainty)
{
for(i=pos, j=RFbuffer_index-1; j!=255; --i, --j)
{
if(RF_findWidths[j] != RF_findWidths[i])
{
break;
}
}
if(j == 255)
{
break;
}
}
}
}
}
break;
}
}
}
// Purpose: This interrupt service routine is used
// to send data to a transponder
// Inputs: None
// Outputs: None
// Purpose: Interrupt for timer 0. Keeps track of the number of
// overflows for timeouts.
// Inputs: None
// Outputs: None
#INT_RTCC
void isr_rtcc()
{
++timer0_overflows;
}
// Purpose: Fill the buffer with data read from the basestation
// Inputs: 1) The number of bits to read
// 2) TRUE start on rising edge
// FALSE start on falling edge
// Outputs: The number of bits read. Could be used to check for timeout
int8 RF_get(int8 numBits, int1 edge)
{
RF_readEdge(edge);
RF_readMode = RF_MANCHESTER_DATA;
storeData = TRUE;
bitValue = 0;
RFbuffer_index = 0;
RFbuffer_bitIndex = 0;
dataTransferred = 0;
timer0_overflows = 0;
old_clock = 0;
set_timer1(0);
clear_interrupt(INT_CCP1);
enable_interrupts(INT_CCP1);
while(dataTransferred < numBits && timer0_overflows < 15);
disable_interrupts(INT_CCP1);
RFbuffer_index = 0;
RFbuffer_bitIndex = 0;
return dataTransferred;
}
// Purpose: Send data from the buffer to the transponder
// Inputs: 1) Send numBits of data to the transponder
// 2) The index in the buffer to start at
// 3) The bit position at the index to start at
// Outputs: None
// Purpose: Search for a certain pulse width
// Inputs: 1) The width length in clocks
// 2) Uncertainty to search over a range
// 3) TRUE start on rising edge
// FALSE start on falling edge
// ex) numClocks = 128; uncertainty = 6; range = 122 to 134
// Outputs: TRUE if width was found, FALSE if not found
int1 RF_findWidth(int8 numClocks, int8 uncertainty, int1 edge)
{
RF_readEdge(edge);
RF_readMode = RF_FIND_WIDTH;
RF_widthToFind = numClocks;
RF_widthFound = FALSE;
RF_uncertainty = uncertainty;
timer0_overflows = 0;
old_clock = 0;
set_timer1(0);
clear_interrupt(INT_CCP1);
enable_interrupts(INT_CCP1);
while(RF_widthFound == FALSE && timer0_overflows < 50);
disable_interrupts(INT_CCP1);
return RF_widthFound;
}
// Purpose: Measure a number of pulse widths, both high and low
// Inputs: 1) The number of widths to measure
// 2) TRUE start on rising edge
// FALSE start on falling edge
// Outputs: The number of widths that were measured. If there is
// no transponder in range, the timeout could occur.
int8 RF_measureWidths(int8 numWidths, int1 edge)
{
RF_readEdge(edge);
RF_readMode = RF_MEASURE_WIDTHS;
dataTransferred = 0;
RFbuffer_index = 0;
timer0_overflows = 0;
old_clock = 0;
set_timer1(0);
clear_interrupt(INT_CCP1);
enable_interrupts(INT_CCP1);
while(dataTransferred < numWidths && timer0_overflows < 50);
disable_interrupts(INT_CCP1);
return dataTransferred;
}
// Purpose: Measure a number of pulse widths, both high and low
// Inputs: 1) A pointer to an array of widths. It is safe to use RFbuffer.
// 2) The number of widths in the pattern
// 3) Uncertainty to search over a range
// 4) TRUE start on rising edge
// FALSE start on falling edge
// Outputs: The number of widths that were measured. If there is
// no transponder in range, the timeout could occur.
int8 RF_findPattern(int8* widths, int8 numWidths, int8 uncertainty, int1 edge)
{
RF_readEdge(edge);
RF_readMode = RF_FIND_PATTERN;
RF_patternFound = FALSE;
RFbuffer_index = 0;
RF_findWidths = widths;
dataTransferred = numWidths;
RF_uncertainty = uncertainty;
timer0_overflows = 0;
old_clock = 0;
set_timer1(0);
clear_interrupt(INT_CCP1);
enable_interrupts(INT_CCP1);
while(RF_patternFound == FALSE && timer0_overflows < 40);
disable_interrupts(INT_CCP1);
return RF_patternFound;
}
// Purpose: Set every byte in the buffer to data
// Inputs: None
// Outputs: None
void RFbuffer_fill(int8 data)
{
int i;
for(i=0; i<sizeof(RFbuffer); ++i)
{
RFbuffer[i] = data;
}
}
// Purpose: Inverts every byte in the buffer
// Inputs: None
// Outputs: None
void RFbuffer_invert()
{
int i;
for(i=0; i<sizeof(RFbuffer); ++i)
{
RFbuffer[i] = ~RFbuffer[i];
}
}
// Purpose: Get a bit of data from the buffer and increment to the next bit
// Inputs: None
// Ouputs: A bit of data
int1 RFbuffer_getBit()
{
int1 bit;
if(!END_OF_RFBUFFER)
{
bit = bit_test(RFbuffer[RFbuffer_index], RFbuffer_bitIndex);
if(++RFbuffer_bitIndex == 8)
{
++RFbuffer_index;
RFbuffer_bitIndex = 0;
}
}
return bit;
}
// Purpose: Get a byte of data from the buffer
// Inputs: None
// Outputs: The byte of data
int8 RFbuffer_getByte()
{
if(!END_OF_RFBUFFER)
{
int8 i;
int8 data;
for(i=0; i<8; ++i)
{
shift_right(&data, 1, RFbuffer_getBit());
}
return data;
}
}
// Purpose: Set the value of the next bit in the buffer
// Inputs: None
// Outputs: None
void RFbuffer_setBit(int1 bit)
{
if(!END_OF_RFBUFFER)
{
if(bit)
{
bit_set(RFbuffer[RFbuffer_index], RFbuffer_bitIndex);
}
else
{
bit_clear(RFbuffer[RFbuffer_index], RFbuffer_bitIndex);
}
if(++RFbuffer_bitIndex >= 8)
{
++RFbuffer_index;
RFbuffer_bitIndex = 0;
}
}
}
// Purpose: Set the value of the next byte in the buffer
// Inputs: None
// Outputs: None
void RFbuffer_setByte(int8 data)
{
if(!END_OF_RFBUFFER)
{
int8 i;
for(i=0; i<8; ++i)
{
RFbuffer_setBit(bit_test(data, 7));
rotate_left(&data, 1);
}
}
}
#endif